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Invasion percolation universality class and fractal geometry of magnetic domains

J. P. Attané,">* M. Tissier,> A. Marty,"? and L. Vila'?
YWhiversité Joseph Fourier, BP 53, 38041 Grenoble, France
2INAC, SP2M, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble, France
3Laboratoire de Physique Théorique de la Matiére Condensée, 4 Place Jussieu, 75252 Paris Cedex 05, France
(Received 11 January 2010; revised manuscript received 22 June 2010; published 12 July 2010)

The magnetization reversal process of thin epitaxied FePt/Pt(001) and FePt/MgO(001) layers occurs through
rare nucleation events followed by domain-wall propagation. Whereas low-scale observations show that these
systems possess very different domain-wall geometries, the structures of the reversed magnetic domains appear
to be similar at larger scales: at the beginning of the magnetization reversal, their geometry is that of a fractal
percolating cluster. This similarity is analyzed and explained using percolation theory tools and standard
domain-growth models, and appears to be an experimental illustration of the universality associated with
two-dimensional percolation. We study, in particular, the influence of the demagnetizing field on critical
properties and discuss the extent to which these results can be applied to other magnetic thin layers.
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In the vicinity of a phase transition, the physical proper-
ties depend upon only few elements, as dimensionality and
symmetries, and are insensitive to the underlying micro-
scopic properties. Recently, elements of phase-transition
theory have been used in order to describe the morphology
of a moving interfaces submitted to a random constraint.

The best known applications of phase-transition theory to
rough interfaces use 1+1D or 2+ 1D models. Such models
are well adapted to cases where the growth of the interface
occurs in a bubblelike geometry: the interface can then be
represented by a height function A(7), with 7 perpendicular to
the direction of growth of the interface. In complete absence
of disorder, the interface is smooth, i.e., 4(7) is constant. In a
disordered environment, the roughness of the interface in-
creases, leading to the development of height fluctuations
whose critical behavior is described in the theoretical side by
the Kardar-Parisi-Zhang' (KPZ) and Edwards-Wilkinson®
equations. Those continuous equations and their universality
classes have been used to describe magnetic domain-wall
(DW) geometries® as well as many phenomena, ranging from
solid surface growth to combustion fronts propagating in
sheets of paper.*

When the effect of the disorder increases, the roughness
will increase until the appearance of dendrites. For strong
disorders, the pattern indeed becomes arborescent; conse-
quently the interface cannot be described by an univaluate
height function, and the 141D or 2+ 1D models of growth
become inadequate. For such cases, percolation theory can
sometimes provide a description of the interface geometry. In
the simple two-dimensional (2D) percolation problem, one
considers the probability p for a site to be occupied. At low
p, neighboring occupied sites form clusters of finite sizes.
When p reaches the percolation threshold p,., appears a per-
colating cluster (i.e., a cluster of infinite size). The mean size
of the finite clusters is characterized by the correlation length
¢, and the probability for an occupied site to belong to the
percolating cluster is given by the order parameter P, (Ref.
6). Both these quantities diverge near P, &x|p—p.™ and
P, (p—p.)~P. The critical exponents 3 and v do not depend
on the type of lattice: they are characteristic of the univer-
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sality class associated to bidimensional percolation. Its val-
ues have been calculated exactly.’

Close to p., the geometry of the percolating cluster is
fractal: it exhibits self-similarity and scale invariance, which
means that small parts of the cluster look similar to the
whole cluster. The fractal dimension of the percolating clus-
ter can be related to the critical exponents 8 and v

Di=d- Blv=91/48 = 1.896,

where d=2 is the dimension of the lattice.® On a theoretical
point of view, this universality class was found to describe
correctly the geometry of percolating clusters in the random
field Ising model (RFIM) and random bond Ising model
(RBIM), when those models are pushed in the limit of strong
disorder.”8 This geometry is also those of the percolating
cluster in the invasion percolation without trapping (IPWT)
problems.9 In this model, random values of resistance to fluid
invasion are attributed to the cells of a lattice. The fluid is
then injected in one cell, with an increasing pressure. The
fluid can invade a neighboring cell if the applied pressure
overcomes its attributed value of resistance. For a given
value of pressure, the fluid will percolate throughout the lat-
tice.

Whatever the model used (simple percolation, RFIM and
RBIM at high disorder, or IPWT), the fractal dimension of
the percolating cluster is equal to 1.986. In particular, it does
not depend on the structure of the lattice.

In a previous paper,'! we showed that FePt/Pt layers pos-
sess a square lattice of defects, on which magnetic domain
growth can be analyzed as simple percolation in a bond lat-
tice. In this paper, we compare the FePt/Pt system with an-
other kind of magnetic layers, FePt/MgO, which possesses a
different microstructure, and thus different domain patterns
at low scale, but exhibits similar fractal geometries at large
scale, similar to those of a percolating cluster. We show that
this phenomenon is a manifestation of universality, being due
to the fact that most 2D cells or Ising-type models, taken in
the strong disorder limit and without demagnetizing field,
can be assimilated to an IPWT process. Using simulations,
we finally point out the role of the demagnetizing field,
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FIG. 1. Hysteresis loops measured in perpendicular field by ex-
traordinary hall effect, in a (a) FePt(32nm)/Pt(40nm)/MgO(001)
and a (b) FePt(32nm)/MgO(001) sample. Both loops possess strik-
ingly similar features. In the (b) case, the major loop is followed by
a partial reversal of magnetization and a decrease in the magnetic
field to zero.

showing that it affects the magnetic domain pattern only at
low scales, without modifying the critical properties.

The experimental systems consist of thin FePt layers
grown by molecular-beam epitaxy. These layers possess a
huge magnetocrystalline anisotropy perpendicular to the
sample (B,~10 T), and consequently thin DW and well-
defined magnetic domains. In order to obtain different
sources of disorder, part of the layers were deposited directly
on a Pt(001) substrate, as described in Ref. 10 whereas the
other layers where deposited on a MgO(001) substrate. Typi-
cal thicknesses of these layers range from 10 to 40 nm. The
magnetization reversal of FePt/Pt(001) layers has already
been studied in details in Refs. 10 and 11.

As shown in Fig. 1, these two kinds of layers possess
similar magnetic properties. The coercive field is about 0.3 T,
depending upon the thickness of the sample. The remnant
hysteresis loops in perpendicular field [see Fig. 1(b)] allow
magnetic imaging by magnetic force microscopy (MFM) at
any stage of the magnetization reversal:'® we emphasize that
there is no noticeable change in the magnetization when the
applied field is reduced to zero. In this paper, we will focus
on the beginning of the magnetization reversal, which in
both cases consists of a very sharp drop of the magnetization.
The reversal field is applied very slowly (~107% T s,
which means that the domain structure results from slow
thermo-activated propagation of the domain wall rather than
viscous precession-related motion.

We realized several MFM images of samples in remnant
magnetic states corresponding to the very beginning of the
magnetization reversal. Low-scale images show that the re-
versed domain is connected in both cases, i.e., it is a single
domain. This implies that the reversal occurs through DW
propagation from very rare extrinsic nucleation centers. De-
spite these similitudes, MFM observations show that the
low-scale geometries of the domains are very dissimilar. In
the FePt/Pt layer [Fig. 2(a)], the epitaxial growth process
leads to the formation of structural defects named “micro-
twins,” inducing a nanostructuration of the layer within a
semiperiodic lattice. MFM images demonstrate that the pe-
culiar square geometry of the reversed domain is due to the
pinning of the DW on the microtwins. The microtwins for-
mation process as well as the pinning process have been
extensively studied in previous papers.!'%-1?

By contrast, FePt/MgO samples present smoothly curved
DW [Fig. 2(b)]. Notwithstanding this geometry, which is due
to DW energy minimization, the strength of the coercive
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FIG. 2. All these figures correspond to the beginning of the
magnetization reversal, the reversed domain appearing in black. (a)
8 X8 um? MFM image of a FePt/Pt sample. The DW is pinned
along the microtwins. (b) 8 X8 um? MFM image of a FePt/MgO
sample. As there is no microtwin, the DWs are isotropic. (c) and
(d): 64X 64 um?> MFM images of a FePt/Pt sample. (e) and (f):
64X 64 um?> MFM images of a FePt/MgO sample. The domains
are fractals, with white parts (unreversed parts) of all sizes. (g) and
(h) Simulated geometries of percolating clusters. Although in low-
scale (a) and (b) images, domain geometries differ from one kind of
sample to another, large-scale images (c), (d), (), and (f) exhibit for
both FePt/Pt and FePt/MgO samples the classical geometry of a
percolating cluster shown in (g) and (h). (c), (d), (g), and (h) have
already been published in Ref. 11.

field and the fullness of the remanence imply that the DWs
are tightly pinned on defects. Structural studies'® showed
that the strain relaxation process occurs by the creation of a
lattice of dislocations at the interface between the MgO sub-
strate and the FePt layer. These defects could interact with
DWs through magnetoelastic coupling. TEM observations
showed also that there were antiphase boundaries, which can,
according to numerical simulations, pin efficiently the DWs
in FePt layers. Whichever the source of coercivity in FePt/
MgO samples, the pinning defects are microscopically very
different from the microtwins, thus generating isotropic DWs
geometries instead of square patterns.

Whereas low-scale MFM images (~1-8 wm) show dis-
tinct domain geometries in FePt/Pt and FePt/MgO samples,
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large images (~60—120 wm) reveal similar domain struc-
tures [Figs. 2(c) and 2(d)]. In both kind of layers and regard-
less of the thickness of the sample, the structure of the re-
versed domain is fractal, i.e., there are unreversed (white)
part of the sample of all sizes: one can easily find zones
larger than 120X 120 um? (maximal scanning size of our
MFM) where there is no reversed domain. Note that, as such
images are worthless in studying the reversed domain geom-
etry, we retained only images where the reversed domain
cross the four hedges of the image.

We measured the fractal dimension of the reversed do-
main in several FePt/MgO films, using a box-counting
method.'* Each image is covered by a sequence of grids of
descending sizes. For each size of grid are recorded: the
number of square boxes intersected by the reversed domain,
N, and the side length of the squares, a. The regression slope
D of the straight line formed by plotting In(N) against
In(1/a) gives the fractal dimension of the reversed domain.
We obtain an average value over 25 MFM images of D,
=1.88*+0.02, very close to the theoretical value of 91/48
~1.896 of a percolating cluster. Furthermore, there is an
excellent qualitative agreement between the geometries of
simulated percolating clusters and experimental images [see
Figs. 2(g) and 2(h)].

In a previous paper,!! this fractal geometry has been also
observed in FePt/Pt layers, and it was shown that the geom-
etry of the reversed domain was analogous to those of a
percolating cluster near the percolation threshold, the experi-
mentally observed fractal dimension of the domain being
D;~1.88. This geometry was analyzed on the basis of a
growth model specifically adapted to the microstructure
(square lattice of microtwins) of the FePt/Pt layers. Here, the
appearance of a similar pattern in FePt/MgO samples shows
that this fractal geometry is not limited to the case of micro-
twins, but is actually much more general. It also implies that
this phenomenon should be studied considering more general
models than the percolation in a bond lattice described in
Ref. 11. In the following, we will consider the models most
commonly used to describe magnetization reversal in 2D
magnetic layers, in order to check wether they can explain
the observed geometries of the reversed domains.

The simplest models used to describe magnetic domain
growth are Ising-type models. In Fig. 2(b) (FePt/MgO), the
dendritic structure is given by the energy competition be-
tween the demagnetizing field (long-range antiferromagnetic
interaction) and the domain-wall energy (short-range ferro-
magnetic interaction). The third important ingredient in-
volved in the growth process is clearly the disorder (for in-
stance the microtwins in FePt/Pt) that pins the domain walls.
A minimal model that takes into account all these interac-
tions is the RFIM with dipolar interactions, whose Hamil-
tonian is

H=2Ji,jSiSj_E[hi+B([)]Sia (1)
ij i

where J; ; describe both the ferromagnetic nearest-neighbor
interaction (i.e., the DW energy) and the dipolar (antiferro-
magnetic) long-range interaction
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a-J if dij)=1

Jij=]_@ . (2)
— 5 otherwise,
d(i,j)

where d(i, ) is the distance between the spins S; and S}, h; is
a random static field, given by a Gaussian probability distri-
bution of width A, « is a constant quantifying the importance
of the dipolar field, and B(¢) is the uniform field that drives
the domain growth. A spin can be flipped under the condition
that it has at least one returned neighbor. Moreover, in order
to account for the very slow increase in the external magnetic
field, its value is increased only when no more spin can be
flipped.

This model has already been considered in a few studies
to describe hysteresis properties (see Ref. 15). It introduces
the dipolar interactions, which were first used in the simple
2D Ising model by Sampaio et al.,'® within the RFIM at zero
temperature used by Ji and Robbins.”?

Let us consider first a disorder strength much larger than
the exchange term and the demagnetizing field. For a given
external magnetic field, only a portion of the sites [those for
which h;+B(t)>0] can be flipped. Consequently, the prob-
lem boils down to an IPWT problem,’ the pressure and the
resistance to fluid invasion being replaced, respectively, by
the magnetic field and the coercivity values h;. Note that the
invasion percolation process occurs without trapping. In-
deed, and contrarily to the initially proposed case of two
incompressible fluids, in a magnetic layer a trapped unre-
versed domain (i.e., an unreversed domain surrounded by a
reversed domain) can be reversed if the magnetic field in-
creases. Therefore, the generated percolating cluster is simi-
lar to those obtained in standard percolation. According to
this simple analysis, the fact that both FePt/MgO and FePt/Pt
layers possess very strong disorders is the reason why the
observed domain patterns are similar at large scale.

Let us now focus on the effects of dipolar field. At smaller
disorder strengths, the demagnetizing field becomes impor-
tant. At small length scales one observes a dendritic pattern
reminiscent of the serpentines observed in equilibrium con-
figurations (see, e.g., Refs. 16 and 17). In order to reproduce
our experimental results, where such demagnetizing field ef-
fects can be observed at low scales [cf. Figs. 2(a) and 2(b)],
we had to determine the appropriate values of the parameters
a/J and A/J. The first ratio can be extracted from experi-
mental  characteristics of our samples (Mg=1.03
x10® Am™, Ky=5.0X10° T m?, and A=6.9
%X 10712 T m™"), using the modeling of thin films by an Ising
model described in Ref. 15; we thus find «/J=0.27.

The pertinent value of the disorder strength A/J cannot be
easily extracted from experimental characterization. We have
therefore simulated the dynamics presented above for differ-
ent values of this ratio. As expected, the short-distance prop-
erties are strongly influenced by the demagnetizing field. In
Fig. 3 we show the typical short-distance behavior of the
flipped domain. At A/J=0.15 the demagnetizing field is re-
sponsible for the dendritic behavior seen in Fig. 3(a). Self-
avoidance of growing dendrites gives rise to a pattern similar
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FIG. 3. Patterns observed at the percolation threshold using
a/J=0.27. The disorder strength is A/J=0.15 for (a), (c) and A/J
=0.8 for (b), (d). (a) and (b) are 250 pixels large, and are magnified
parts. (c) and (d), which are 1024 pixels large. A dendritic structure
with typical size of around ten pixels is clearly seen in Fig. 3(a),
reproducing qualitatively the experimental data [see Figs. 2(a) and
2(b)]. For a larger disorder [Fig. 3(b)] the structure is still fractal
down to the size of the pixel. The obtained geometries are quanti-
tatively and qualitatively similar at large distances to those obtained
in the simple percolation problem [cf. Figs. 2(g) and 2(h)].

to that observed in experimental systems [see Figs. 2(a) and
2(b)]. At higher A/J the effect of demagnetizing field disap-
pears and we retrieve the pattern observed in IPWT [see Fig.
3(b)], which is fractal down to the pixel.

Although the short-distance regime is clearly affected by
the presence of the demagnetizing field, the long-distance
properties are not modified by the long-range interaction.
This can be seen in Figs. 3(c) and 3(d), where one observes
that the fractal structures are qualitatively similar. The inde-
pendence of the long-distance properties of the percolating
cluster with respect to demagnetizing field can be made more
quantitatively by analyzing the fractal dimension of the re-
versed cluster. In Fig. 4, we show the typical box-counting
log-log plot, for systems with different strengths of disorder.
The slope of the curve gives the fractal dimension, the lin-
earity being linked to the self-similarity. The straight line
which corresponds to the fractal dimension of a standard
percolating cluster provides a good fit of the simulation re-
sults. These results suggest that the demagnetizing field (i.e.,
the dipolar interaction), even if strong enough to lead to a
dendritic pattern at low scale, does not change in a signifi-
cative way the critical properties of the percolating cluster.
Using similar computations, we have also checked that a
change in ratio «/J in a reasonable range does not modify
significantly the critical properties of the percolating cluster.

According to the results obtained using the RFIM, the
observed universality is thus due to the domination of disor-
der, and should not be modified by demagnetizing field ef-
fects. However, one can wonder whether this result is model
dependent. Apart from Ising-type models, domain-growth
models in magnetic thin layers with perpendicular magneti-
zation are usually micromagnetic models,'”” where the
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FIG. 4. (Color online) Log-log plot of the box-counting method:
the sample is divided in boxes of size a (in arbitrary units), and N
corresponds to the number of boxes in which there exists a returned
spin. The crosses correspond to A/J=0.8 and the open circles to
A/J=0.15. The plain curve is a line with a slope of 91/48 that
corresponds to the theoretical value for a percolation cluster and fits
quite nicely the simulation results.

elementary cells composing the layers possess specific prop-
erties (anisotropy, volume,...), and which most often include
a dipolar long-range interaction. Most of those cell models
take basically into account the applied field, a disorder
source (anisotropy fluctuations,...), an exchangelike interac-
tion between cells and a dipolar interaction. Thus, they sim-
ply map to the RFIM model with dipolar interaction used in
this study, and lead to similar results when looking for criti-
cal properties. Moreover, in the strong disorder limit, the
dipolar interactions are negligible. In such case, the growth
in any cell model can be summarized exactly like an IPWT
problem: the applied field determines simply the ratio of cell
which can be reversed, and a cell can be reversed if and only
if an adjacent cell is already reversed. Therefore, the only
ingredients necessary to obtain a percolationlike pattern are
the existence of two states of magnetization, and the pres-
ence of a disorder strong enough to pin efficiently the layer.
The results obtained in this study may consequently be gen-
eralized to 2D magnets reversed by domain-wall propaga-
tion, as long as they possess a strong disorder: especially,
similar geometries of magnetic domains should be observed
at large scale, especially in similar magnetic layers with per-
pendicular anisotropy (CoPt, CoNi,...).

Still, some conditions are required to observe such geom-
etries. Experimentally, a large density of nucleation centers
can prevent the observation of self-similarity, the mean dis-
tance between centers being an upper limit for the scale in-
variance. Indeed, depending on the characteristic lengths of
the problem (domain-wall width, equilibrium domain size),
the mean distance between nucleation centers can be smaller
than the equilibrium domain size, above which the geometry
is supposed to be fractal. Also, if the applied field is much
bigger than the coercive field, the domain wall can depin
itself from all pinning centers, and the growth pattern should
then be controlled by dynamical KPZ-type equations.

To sum it up, the similarity of the large-scale geometries
of the reversed domain in FePt/Pt and FePt/MgO layers can
be understood on the basis of standard domain-growth mod-
els IPWT, RFIM at zero temperature, cell models). It thus
provides an original example of criticality-related universal-
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ity, which can be transposed to other magnetic thin layers.
Our simulations based on the RFIM suggest that the intro-
duction of demagnetizing field does not modify the univer-
sality class. An interesting development of this work might
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be to use fields largely higher than the coercive field, to
study the transition between 2D percolationlike growth and
1+ 1D growth, which is then expected to be in the universal-
ity class of the one-dimensional KPZ equation.
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